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Population Dynamics near an Oasis with
Time-Dependent Convection
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We investigate the time evolution of a bacterial population near a favorable
spot with time-dependent convection. Diffusion, growth, and saturation effects
lead to a localized colony which spreads out in the surroundings. Convection by
a time-dependent but spatially uniform random velocity introduces fluctuations.
Equations of motion for ensemble averages are derived and compared to
numerical simulations.
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I. INTRODUCTION

The dynamics of populations in a disordered environment has recently
aroused interest, in part because of a close analogy to the localization
problem of noninteracting electrons in a random potential. A constant
convective term in the linearized Fisher equation for population growth can
be viewed as a non-hermitian perturbation of an Schro� dinger operator. The
spectrum of this time-evolution operator reveals a diverging localization
length with a sharp mobility edge.(1)

This model is in fact a particularly simple example of a broad class
which combines elements of fluid mechanics with population dynamics,
possibly at high Reynolds number. A classic problem in fluid mechanics
concerns convection and diffusion of a passive scalar contaminant by an
incompressible turbulent fluid.(2) New phenomena arise if the ``passive
scalar'' is replaced by a biological population which can multiply and
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saturate in the fluid medium, especially.if there are spatial inhomogeneities
in the growth rates. Consider, for example, replacing the passive scalar by,
e.g., plankton populations in the ocean.(3, 4) One might model this situation
by combining the Navier-Stokes equations for an incompressible fluid with
velocity v(x, t), density *0 , viscosity &, and pressure p(x, t) with an equa-
tion describing transport and growth of a population density c(x, t),

�t v+v } {v=&
1
*0

{p+&{2v, { } v=0 (1)

�t c+v } {c=D{2c+ac&bc2 (2)

Here, D is the diffusion constant of, say, the plankton which grow at rate
a and whose population is limited by competition for limited resources by
the nonlinear term &bc(x, t)2.

The effect of a space and time-dependent velocity field is governed by
Eq. (1) corresponding to fully developed turbulence on the population
dynamics described by Eq. (2) is beyond the scope of this paper. A constant
velocity (with spatially varying growth rates) was considered in ref. 1. Here,
we discard Eq. (1) and consider the effect of a velocity field v(t) which is
random in time but constant in space. Such a model might be a crude
approximation for the effects of turbulence on microorganisms in regions
smaller than the Kolmogorov scale. We continue the discussion initiated in
ref. 5 by focusing on how this time-dependent convection or ``wind'' affects
the population near a hot spot of favorable growth rates (an oasis)
surrounded by a less favorable ``desert'' region. We also discuss how the
colony which develops is affected by a nonlinear saturation term.

The dynamics of the density of the bacterial population c(x, t) is
governed by a generalization of the Fisher equation(6)

�t c(x, t)=D{2c(x, t)+U(x) c(x, t)&bc(x, t)2&v(t) } {c(x, t) (3)

Here D denotes the diffusion constant and U(x) a spatially varying growth
rate. We assume that there is a single favorable spot referred to as oasis,
which we take as the origin. Far away from the oasis, say for |x|>x0 , the
growth rate is assumed to be uniform and slightly negative or zero,

U(x)=&V0�0 for |x|>x0 (4)

which defines a region of ``desert.'' The nonlinear term accounts for satura-
tion effects due to competition within the species for resources. For simplicity
the coefficient b is taken to be space-independent. The last term in the
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generalized Fisher equation describes advection by a random spatially
uniform time-dependent velocity with a Gaussian statistics in time,

(v:(t))=0

(v:(t) v ;(t$))=21$:;$(t&t$) (5)

II. THE QUIESCENT OASIS

We first review some properties of the model without the random
``wind'' embodied in the velocity v(t), i.e., 1=0. For long times the density
profile approaches a stationary state c0(x). A trivial solution is given by the
extinction fixed point, namely c0(x)=0. The linearized equation is suf-
ficient to analyze the stability of this solution. Hence, the extinction fixed
point is stable if all eigenvalues of the Schro� dinger-like operator D{2+
U(x) are negative. We are interested in the case where the desert is only
slightly lethal, i.e., V0 is a small parameter. Then positive eigenvalues of the
growth operator correspond to bound states of the Schro� dinger equation.
In one dimension, on which we focus here, there is always at least one
bound state, if there is a region of positive growth rates U(x) for |x|<x0 . (7)

Then we expect a nonzero population in the steady state and the stationary
profile is given by the nontrivial solution of

D
d 2

dx2 c0(x)+U(x) c0(x)&bc0(x)2=0 (6)

For |x|>x0 the potential is a constant and the differential equation is of
the form of Newton's equation (x is ``time'' and c0(x) plays the role of a
particle ``position''), which can be solved by the method of quadratures.
The solution that satisfies the boundary condition c0( |x| � �)=0 has the
form of a scaling law and is given for |x|>>x0

c0(x)=
3V0

2b
1

sinh2((x+x\) - V0 �D�2)
(7)

where the length scales x\ are supposed to be somewhat less than the
extension of the oasis x0 and have to be determined by matching to the
solution inside of the oasis. The localization length !=- D�V0 diverges as
V0 � 0+ and the colony spreads further out into the desert. For large !,
one obtains a power law at intermediate length scales,

c0(x)r
6D
b

1
x2 , |x0 |<<|x|<<! (8)
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and a crossover at |x|t! to an exponential decay

c0(x)r
6D
b!2 exp(&|x|�!), |x|>>! (9)

These results suggest universal behavior in the limit !>>x0 , i.e., results
independent of the details of the oasis, such as the parameters x\ .
Similarly, one can convince oneself that adding higher nonlinearities, like
terms c3

0(x), will not change the asymptotic results. The origin of this
universality is that dimensional analysis allows only for the length scale !
apart from scales determined from the local properties of the oasis. In the
simplest case, fulfilled in one dimension, the stationary density profile far
away from the oasis is governed by the single length scale !.

The dynamics of the population introduces a second diffusive length
scale *=- Dt which grows to infinity as t � �. An initial localized pop-
ulation, say c0(x, t=0)=0 for |x|>x0 will spread out into the desert and
approach the stationary state. For long times and distances deep in the
desert we expect a scaling law

c(x, t)=
6D
b!2 f \x

!
,

x
*+ (10)

with a dimensionless function f. From the discussion of the last paragraph
we already know f (x~ , 0)=[4 sinh2(x~ �2)]&1, x~ =x�!. Similarly for a
marginally lethal desert V0=0, !=�, the stationary profile will be visible
deep in the desert for distances |x|<<*, whereas no population is expected
for |x|>>*. The scaling function therefore fulfills f (0, x~ )=1 for x~ =x�*
<<1 and f (0, x~ )=0 for x~ � �.

III. RANDOM WIND

In this section we discuss the changes of the properties of the quiescent
oasis when the colony is advected by a random time-dependent ``wind'' in
d dimensions. The stochastic properties of the wind are given by Eqs. (5).
The quantity of interest is the probability distribution W for the density
profile c(x) at time t. We derive the corresponding Fokker�Planck equa-
tion for the Fourier modes

ck (t)=|
V

d dx c(x, t) exp(&ik } x) (11)

c(x, t)=
1
V

:
k

ck (t) exp(ik } x) (12)
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where we use periodic boundary condition in a cubic box of volume
V=Ld. The nonlinear time-evolution equation of the random field ck (t)
then reads

d
dt

ck (t)=&Dk2ck (t)+:
q

[Uk&q&bck&q(t)] cq (t)&ik } v(t) ck (t) (13)

The probability distribution is given by

W([.k ], t)=�`
k

$(ck (t)&.k )� (14)

Performing the usual steps, (see e.g., ref. 8) one derives the Fokker�Planck
equation

�t W=&:
k

�
�.k {_&(D+1 ) k2.k +:

q

[Uk&q&b.k&q] .q& W

+:
q

1 (k } q)
�

�.q

[.k.q W]= (15)

Exact equations of motion for various moments of W can easily be derived.
For example, the average of a density Fourier mode satisfies

d
dt

(ck )(t)=&(D+1 ) k2(ck )(t)+:
q

Uk&q(cq )(t)&b :
q

(ck&q cq )(t)

(16)

In real space one derives

�t(c(x))(t)=(D+1 ) {2(c(x))(t)+U(x)(c(x))(t)&b(c(x)2)(t) (17)

Suppose at time t=0 the time evolution starts with a small population
density. Then for short times one can neglect the nonlinearity in Eq. (17)
and the average density again satisfies a linear equation of the Schro� dinger
type. The only effect of the random wind is the replacement of D by an
enhanced effective diffusion constant D+1. In dimension three and higher
this enhancement can lead to an extinction transition.(7) Namely if the
quiescent oasis possesses one or several bound states which grow in time,
a strong wind leads to a Schro� dinger operator with scattering states only,
corresponding to a decrease of the density. Since the nonlinear saturation
only suppresses growth, its neglect is justified for all times. The extinction
transition for a marginally lethal desert, V0=0+, is accompanied by a

1025Population Dynamics near an Oasis



divergent localization length. Since the eigenvalue of the last bound state
=0 � 0& as 1 � 1&

c , where 1c denotes the critical wind strength separating
survival and extinction, the localization length l=- (D+1 )�=0 grows to
infinity. Likewise the validity of the neglect of the saturation is valid for
times up to the order or tt1�=0 and diverges as the critical wind strength
is approached from below. In one and two dimensions, there will always be
at least a single bound state(7) and the localization length diverges only for
1 � �.

At long times, we expect that the probability distribution approaches
a nonzero stationary state for 1<1c , i.e., in the survival phase. Upon
neglecting the second order derivative in the Fokker�Planck equation (15),
i.e., all fluctuations due to the noise introduced by the wind, a solution is
given by

Weq([.k ])=`
k

$(c0k&.k ) (18)

where c0k solves the mean-field equation

&(D+1 ) k2c0k+:
q

Uk&qc0q&b :
q

c0, k&q c0q=0 (19)

Hence in this mean field approximation one recovers the properties of the
quiescent oasis with the mere replacement D � D+1. We now argue that
the exponents for the stationary mean-field solution are actually a lower
bound. Suppose (c(x)2) t1�|x| 2; for large |x|. Then Eq. (17) implies
(c(x))t1�|x| 2;&2 for V0=0+. However, (c(x)2)�(c(x)) 2 and there-
fore 2;�4;&4 or ;�2.

IV. NUMERICAL RESULTS

In this section we check our theoretical results against numerical
results obtained from a lattice version of Eq. (3). The population is concen-
trated at the sites of a hyper-cubic lattice with lattice spacing a0 and a finite
box length L. Open boundary conditions are imposed. The local density at
cell i of the population is then approximated by c(xi )=ci �ad

0 . Diffusion
arises as the result of hopping processes between neighboring cells. The
wind introduces a bias in the hopping rates. A suitable discretization of
Eq. (3) is given by

d
dt

ci=
D
a2

0

:
j(i)

ev(t) } (xj&xi)�(2D)(cj (t)&ci (t))+Uici (t)&b� ci (t)2 (20)
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with b� =b�ad
0 , U i=U(xi ), and where the sum over j runs over nearest

neighbors of i. In order to give the lattice version a precise meaning one
has to regularize also the statistics of the random velocity. For simplicity
we consider

(v:(t)) =0 (21)

(v:(t) v ;(t$)) =
1
{

exp \&
|t&t$|

{ + (22)

A nonzero correlation time { implies that typically the velocity at any
particular time is of the order - 1�{. Note that the local hopping bias
exp(va0 �D)&1 becomes small as the lattice spacing a0 is decreased. The
continuum limit with a white noise field is recovered in the limit of first
letting a0 � 0 and then { � 0.

Numerical simulations are performed for a one dimensional chain with
1000 lattice sites. Units of length and time are taken to be a0 and a2

0 �D,
respectively. The oasis is located at the single site x0=0, all other sites
being considered as desert. A small initial population is concentrated on
the oasis, whereas the desert is uninhabitated. Neglect of saturation effects,
i.e., b� =0 is justified for small population densities. In order to compare to
the analytical formulas one should perform an ensemble average over the
different realizations of the wind. A directly accessible quantity is the time-
averaged normalized population density. For b� =0 the Eq. (20) is linear.
Although normalization at each time step does change the time evolution
of the density profile, it takes out the trivial overall growth of the total
population. Figure 1 exhibits numerical results for the time-averaged nor-
malized population density for an oasis specified by Ui=0.1 $i0 D�a2

0 and a
random wind with parameters 1=D, {=100a2

0 �D. The density profile far
from the oasis is well represented by an exponential characterized by a
decay length of l=40a0 , which is twice as large as compared to the quies-
cent case. The continuum description for a delta potential with a prefactor
of a0U0 yields the same value of l=2(D+1 )�(a0U0). The results depend
only weakly on the correlation time {. The choice of {=100a2

0 �D renders
the local bias exp(va0 �D)&1 a small quantity. However, this time is still
short compared to the ``response'' time =&1

0 corresponding to the eigenvalue
of the bound state =0=a2

0 U 2
0 �[4(D+1 )]=D�(800a2

0). Close to the oasis
deviations from the continuum result are observed.

Figure 2 exhibits the time evolution of a population described by the
nonlinear equation near a marginally lethal quiescent oasis. The growth
rate at the oasis U0=50D�a2

0 has been chosen much larger than in the last
paragraph in order to achieve a small decay length of the eigenstate of the
linearized equation. The details of the oasis therefore do not matter on the
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Fig. 1. Averaged normalized short-time population density (c(x)) (solid line), governed by
a linearized Fisher equation with random convection in the vicinity of an isolated oasis at
x=0. The growth rate at the oasis spot is U0=0.1D�a2

0 and the random velocity is specified
by 1=1.0D, {=100a2

0�D. The short-dashed line is the analytic solution of the continuum
model exp(&|x|�l )�(2l ), l=40a0 . For comparison the same quantity (c(x)) for the quiescent
oasis is plotted (long-dashed line).

Fig. 2. Time-dependent population density, described by a nonlinear Fisher equation for the
marginally lethal quiescent oasis measured in units of b� a2

0 �D. The growth rate at x=0 is
specified by U0=50D�a2

0 . The thick solid lines refer from left to right to times tD�a2
0=100,

200, 400, 800, 1600, 3200, respectively. The short-dashed lines represents the stationary den-
sity. The light solid line represents a power law proportional to 1�x2 and is a guide to the eye.
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scales shown. Shifting curves for different times parallel to the power law
x&2 results in a collapse of all curves on a master function. In particular
one infers the exponent 1�2 which relates lengths to time *tt1�2.

The stationary density profile near an oasis with a random velocity is
exhibited in Fig. 3. For small lethality V0 the population spreads out far
into the desert, i.e., the correlation length diverges at the same critical value
V c

0=0 as in the case of a quiescent oasis. The reason is of course that the
random wind merely redistributes the population locally while conserving
it overall. For a neutral desert V0=0 one observes still a power law for the
stationary density profile far away from the oasis. For very large distances
finite-size effects are apparent. The value of the decay exponent is com-
patible with the mean field ;=2 result, although the prefactor is slightly
shifted. For small but nonzero lethality V0>0 the simulation results
approach exponentials for large x with correlation lengths that fulfill the
scaling relation ! B 1�- V0 . As can be inferred from Fig. 3, increasing the
lethality by a factor of two decreases the correlation length by a factor of
- 2. Moreover, the prefactor is given by - D+1, i.e., the correlation
length is enhanced compared a to quiescent oasis and the correction
follows from the mean-field equation (19). Suppose that for large distances
one can neglect b(c(x)2) compared to V0(c(x)). The solution is then

Fig. 3. Stationary density profile in units of b� a2
0�D near an oasis at x=0 specified by

U0=50D�a2
0 . The thick solid lines refer to simulations for deserts with increasing lethalities

(V0a2
0 �D=0, 0.0005, 0.001, 0.002). Parameters for the random velocity are chosen as in Fig. 1.

The long-dashed line corresponds to 7�x2. The short-dashed curves axe exponentials

7!&2 exp(&|x|�!) with !=- (D+1 )�V0 .
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given by (c(x)) B exp(&|x|�!) with !=- (D+1 )�V0 . The propor-
tionality factor in turn has to be determined by matching to the critical
solution, which results in (c(x)) =A!&2 exp(&|x|�!) where the prefactor
A is independent of V0 .

ACKNOWLEDGMENTS

We thank K. Dahmen and Y. Oreg for many stimulating discussions.
T.F. acknowledges the support of the DFG under contract Fr 1418�1-1.
D.R.N. acknowledges the support of the National Science Foundation,
through Grant DMR-9714725 and the Harvard Materials Research Science
and Engeneering Center via Grant DMR-9809363.

REFERENCES

1. D. R. Nelson and N. M. Shnerb, Non-hermitian localization and population biology, Phys.
Rev. E 58:1383 (1998); See also N. Hatano and D. R. Nelson, Vortex pinning and non-
Hermitian quantum mechanics, Phys. Rev. B 56:8651 (1997).

2. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge,
1972); U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995).

3. A. R. Robinson, On the theory of advective effects on biological dynamics in the sea, Proc.
R. Soc. London A 453:2295 (1997).

4. R. V. Vincent and N. A. Hill, Bioconvection in a suspension of phototactic algae, J. Fluid
Mech. 327:343 (1996).

5. K. A. Dahmen, D. R. Nelson, and N. M. Shnerb, Life and Death near a windy oasis,
J. Math. Biology (in press), http:��xxx.lanl.gov�abs�cond-mat�9807394; See also http:��xxx.
lanl.gov�abs�cond-mat�9903276.

6. J. D. Murray, Mathematical Biology (Springer-Verlag, New York, 1993).
7. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965),

Sec. 45.
8. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford,

1989).

Communicated by J. L. Lebowitz

1030 Franosch and Nelson


